Sosdki-Einstein metrics on spheres (j.w. Yuchen Liv and $T_{\text {dro }} S_{\text {dno }}$ )
flatroduction $(M, g)$ cpt Rienamian manifold, $\operatorname{dim} M$ odd $(M, g)$ is Sasakian if $\left(C(M)=M \times R_{>0}, \bar{g}=r^{2} g+d r^{2}\right)$ $r$ is the coortinate on $\mathbb{R}_{>0}$ is Kähler
$(M, g)$ is Sasaki-Eirstrin it $\overline{\text { s is }}$ iähler and Riciflat , is Enstion
Toldy: on spheres
Exdmple: $\left(s^{2 n-1}, g_{\epsilon}\right)$ ii Serdki-Einstein

$$
c\left(S^{2 n-2}\right) \simeq \mathbb{C}^{n}-404
$$

Homotopy sphere: $\sum^{n}$ red cipt a. dimersioral mnitild (horeo al hudbopy eypiv. to $S^{9}$.

Boye-Galicki- K.llár ós: $\exists$ several SE metics ar diy bonotopy sphere $\Sigma_{1}^{4+1}$ that bounds parallelizable maifolds.
Conj: All odol dimensional haostopy spheres that bourd purll. maniflls adnits SE metic.

Collis-Stékulyhidi is $\exists$ oo-many SE netias on the itaded $S^{5}$

Cooj: $\exists \infty-n x x^{\prime} S E$ metrixs on every standerd $S^{2 n-1}, n \geq 3$
Thm (-) Any homot.py sphere $\Sigma^{2 n-1}$ that bourds parall. manifolds adnits $\infty$-many SE-metrics, $n \geq 3$.
$\oint$ The construction

$$
\begin{aligned}
& n \geq 3, a=\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n+1}, a_{i}>1 . \\
& \text { Let } y(a)=\left\{z_{0}+z_{1}^{a_{1}}+\ldots+z_{1}=0\right\} \leq \mathbb{C}^{n+1}
\end{aligned}
$$

Brieskorn - Phan singularity.
Facts: The link $L(e)=\varphi(e) n S_{\varepsilon}^{2 n+1}$ is a smooth Milnor 68 cinpact simply conected $(2 n-1)$-manitold that bounds a parall. manitald.

Let $d=\operatorname{lcm}\left(a_{i}\right), d_{i}=\frac{d}{a_{i}}$

$$
\begin{aligned}
& \mathbb{C}^{x} \Omega y(e) \subseteq C^{n+1},\{0\} \quad \lambda \cdot\left(z_{0}, \ldots, z_{1}\right)=\left(\lambda^{d_{0}} z_{0}, \ldots, \lambda_{n} z_{1}\right) \\
& \downarrow \\
& x^{\text {arb }} \in \mathbb{P}\left(d_{0}, \ldots, d_{n}\right)
\end{aligned}
$$

Fact (BC) $L(a)$ adnits a SE metric ift $X^{\text {orb }}$ adoits a Ftoo $K E$-netric.

Thm (-) Arsume $a_{0} \leq \varepsilon_{1} \leq \varepsilon_{n} \leq a_{n}$. Then $X^{\text {orb }}$ donits a $K E$. metric iff $1<\sum \frac{1}{a_{i}}<1+\frac{n}{a_{n}}$ Rnk: The condition (Lichnerovicz dostruction) wbs krown
to be necessary.
Proot. $x^{\text {orb }}$ Fno itt $d-\sum d_{i}<0 G 1<\sum \frac{1}{a_{i}}$
Let $(x, \Delta)$ be a par sisociated to $x^{o b}$ :

$$
\begin{aligned}
& g_{j}=\operatorname{gad}\left(d_{0}, \ldots, \hat{l}_{j}, . ., d_{n}\right), a_{i}^{\prime}=a_{i} / \rho_{i}, \rho=g_{0} \cdots \rho_{1} \\
& X \simeq\left\{z_{0}^{e_{0}^{\prime}}+\ldots+z_{n}^{e_{n}^{\prime}}\right\} \subseteq \mathbb{P}\left(\frac{d_{0 g_{-}}}{\rho}, \ldots, \frac{d_{n} g_{n}}{y}\right)=: \mathbb{R}^{\prime} \\
& \Delta=\sum\left(1-\frac{1}{\rho_{j}}\right) H_{j} \\
& H_{j}=\left\{t_{j}=0\right\} n X
\end{aligned}
$$

Thn (C.llins-Ste $\left.\left.k_{p}\right|_{y} h_{i} d_{i}\right) \quad X^{\text {orb }}$ danits a $k E$-metric itt $(x, \Delta)$ is $K$-polystable.

Take $\pi: \mathbb{P}^{\prime} \rightarrow \mathbb{P}^{n} \quad\left[z_{0}: . . z_{n}\right] \leftrightarrow\left[t_{0}^{e}: \ldots z_{n}^{e_{n}^{\prime}}\right]$ $k_{x}+\Delta_{x}=\pi^{x}\left(K_{2}+\Sigma\left(1-\frac{1}{v_{i}}\right) L_{i}\right)$ where

$$
L=\left\{w_{0}+\ldots+w_{n}=0\right\}, \quad L_{i}=\operatorname{Ln}\left\{w_{1}=0\right\}
$$

thong: $(x, s)$ is $k$. pdystalle of

$$
\left(L, \sum\left(1-\frac{1}{i}\right) L_{i}\right) \text { i } k \text {-ply. }
$$

Fujitz: tells you when hypepdine arsis. are $\mathrm{K}_{\text {-poly. }}$
$\oint$ Honotopy spheres $(n \geq 3)$

$n=2 m+1 \quad$ dol $\quad b P_{4 n+2}$ is either $O$ or $Q_{2}$
$n=2 m$ even $\quad b P_{4 m+2}$ is cyclic of order

$$
\left|b p_{4 m+2}\right| \sim 2^{4 m}
$$

Brat: $\quad \theta_{7}=b P_{8}$
Recall: $\quad y(a)=\left\{t_{0}^{e_{0}}+\ldots+z_{1}^{e n}=0\right\}, \quad L(a) \operatorname{lin} k$ $G(a)$ graph: $n+1$ vertices $a_{i}$
$a_{i}$ and $a_{j}$ are connected ( $i \neq j$ ) itt gal $\left(a_{i}, a_{j}\right) \neq 1$.

The (Brieskorn) It G(e) contains at least two isolated vertices, then $L(\Omega)$ is a honotopy sphere.
$n=2 m$ even Assume that $L(a) \in b P_{4 m}$. The diffeonorphism type of $L(e)$ is determined by
$\frac{1}{8} \tau(a) \bmod \left|b P_{4 m}\right|$ where
$\tau(a)$ has a conbinataial expression derenoling a $a_{i}$.

Brieskorn spheres: $a=(2,2, \ldots, 2,3,6 k \pm 1) \quad, 1=2 m$
$L(e) \in b P_{4 m}, \frac{\tau(e)}{8}=(-1)^{m} \mathrm{~K}$, so all elements ir $\mathrm{bP}_{4 \mathrm{~m}}$ a de taken.

Our condition: $1<\sum \frac{1}{k_{i}}<1+\frac{n}{e_{n}}$

Our exanples: Tike $\left.k \in\left\{1, \ldots, \mid b P_{4 n}\right\}\right\}$ did

$$
\begin{aligned}
& a_{0}=a_{1}=2, \quad e_{2}=\ldots a_{n-2}=p, \quad e_{n-1}=p+1 \\
& e_{n}=p+l
\end{aligned}
$$

wher $l=6 k-3, \quad p \equiv 2 \bmod m \ell(l-1)\left|b P_{4 m}\right|$
For p>>0, $L\left(e_{p}\right)$ adnits SE-metrics
Proposition: $\tau\left(e_{p}\right)$ is a plynonial is $p$

$$
\left.\Rightarrow \tau\left(e_{p}\right) \equiv(-1)^{n} k \quad m_{000}\right\rangle\left|b P_{4 m}\right| .
$$

